

Alternative strategies to control of striped cucumber beetle, *Acalymma vittatum*, with mass trapping in cucumber greenhouses

Geneviève Labrie, Steve Lamothe, Manon Laroche and Caroline Provost

Outline of the presentation

- Overview of vegetables greenhouses in Québec, Canada
- Striped cucumber beetle in cucumber greenhouses
- Objectives of the project
- Laboratory and greenhouses experiments
- Discussion and next steps

Overview of vegetables greenhouses in Quebec, Canada

313 ha of greenhouses (151 ha in vegetables)

676 producers of vegetables and fruits in greenhouses

467 < 1000 m² (69% of producers) = 9% total greenhouses area

209 producers (31%) > 1000 m²

16% in organic production

24 ha of tomato,cucumber, pepper, lettuce25 ha of diversified crops

Greenhouses provide 50% of fruit and vegetable consumption of the province

Ferme La boîte à légumes

Striped cucumber beetle (SCB) (Acalymma vittatum)

- Important damages by the transmission of the bacterial wilt (Erwinia tracheifila)
- Few control methods, mainly for organic producers
- Highly attracted by olfactive stimulis (cucurbitacin, aggregative pheromone)
- Attract and kill stragegy developed in fields with attractive lures (Tinsley et al. 2022; Fournier et al. 2019)

Objectives of the project

General objectives:

To develop a mass trapping strategy with attractive lures to reduce the abundance and damage of SCB on cucumber plants in greenhouses

Specific objectives:

- 1) Evaluate the preference of SCB for commercial lures by olfactometry trials (2020-2021).
- 2) Determination of the number of attractive traps in greenhouse (2021-2022)
- 3) Trials of the best attractive lure in commercial greenhouse (2022-2023).

Methodology – Olfactometry

Commercial lures tested:

Seven lures tested:

- 1) Cucumber Hyb. Magic (main crop)
- 2) Blue Hubbard squash (attractive control)
- 3) Commercial lure AG Bio
- 4) Commercial lure Alpha Scent
- 5) TRE8274 (TRÉCÉ Inc)
- 6) TRE8276 (TRÉCÉ Inc)
- 7) KPL (Calsomon®)

- Time spent and choice after 10 minutes
 - JwatcherTM software
 - Wilcoxon and G-Tests

Results – Olfactometry

- > Significative choices:
 - > TRE8276 > cucumber (G = 12,48; p = 0,0004).
 - > **KLP** > **cucumber** (G = 3,96; p = 0,04).
 - Blue Hubbard > TRE8276 (G = 5,06; p = 0,02)

Methodology – Number of attractive lures/greenhouses

Treatments:

- Two lures: TRE8276 and KPL
- Young plants vs old plants (30 plants/sections)
- 1, 2 ou 4 traps/30 plants
- 6 treatments, 4 replicates/treatments
- 50 SCB released/trials

Parameters measured:

Period of 48h (4h, 24h and 48h after the release)

- Number of SCB on sticky traps with lures
- Number of SCB on 15 plants / treatments
- Feeding damages by SCB (area (cm²), damage severity index)
- Bacterial wilt infection (nb of leaves infected, damage severity index)

Results – Nb of attractive lures

- With KPL: + captures after 24h and 48h
- + captures with 4 traps/30 plants for both lures
- Very few SCB on plants
- ↓ SCB near TRE8276 after 48h
- + SCB on mature cucumbers

Methodology – Trials in commercial greenhouses

- Lure TRE8276 in 3 commercial greenhouses (30 x 100m)
- 4 sticky traps + lure/greenhouse
- Control plots at the other end of greenhouse (30,5m apart)
- Parameters measured 1X/week:
- Nb SCB/sticky traps
- Nb SCB/20 plants
- Feeding damages by SCB (area (cm²), damage severity index)
- Bacterial wilt infection (nb of leaves infected, damage severity index)

Results – Trials in greenhouse

More SCB on sticky traps with TRE8276

 $t_{1, 1216} = -26.94; P < 0.05$

Results – Trials in greenhouse

1,10/3

 $t_{1, 1075} = -3.09, P < 0.05$

- ➤ Significant reduction of feeding damage (10 63% following the site) with TRE8276 lure
- ➤ Significant reduction of bacterial wilt (12 73% following the site) with TRE8276 lure

Discussion

- Some of commercial kairomonal lures are attractive to SCB (TRE8276 and KPL)
- 4 traps/30 plants are efficient to attract significant number of SCB (between 4 and 8/attractive replace each 6 weeks)
- Significant reduction of damage and bacterial wilt with the use of TRE8276
 - ➤Other trials to adjust the number of trap to reduce more the BW infection
- Development of other compounds (aggregation pheromone) will help the use of this attract and kill strategy

Acknowledgements

- François Dumont
- Maud Lemay
- Mylène Vaillancourt
- Claudine Desroches
- Stefano Campagnaro
- Myriam Bonneville-Décarie
- Summer students
- Producers

Ce projet a été réalisé en vertu du sous-volet 3.1 du programme Prime-Vert 2013-2018 et il a bénéficié d'une aide financière du ministère de l'Agriculture, des Pêcheries et de l'Alimentation (MAPAQ) par l'entremise de la Stratégie phytosanitaire québécoise en agriculture (SPQA) 2011-2021.